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Abstract
We calculate the force operator for a charged particle in the field of an
Aharonov–Bohm flux line. Formally this is the Lorentz force, with the magnetic
field operator modified to include quantum corrections due to anomalous
commutation relations. For stationary states, the magnitude of the force
is proportional to the product of the wavenumber k with the amplitudes of
the ‘pinioned’ components, the two angular momentum components whose
azimuthal quantum numbers are closest to the flux parameter α. The direction
of the force depends on the relative phase of the pinioned components. For
paraxial beams, the transverse component of our expression gives an exact
version of Shelankov’s formula (Shelankov A 1998 Europhys. Lett. 43 623–
8), while the longitudinal component gives the force along the beam.

Nonstationary states are treated by integrating the force operator in time to
obtain the impulse operator. Expectation values of the impulse are calculated for
two kinds of wavepacket. For slow wavepackets, which spread faster than they
move, the impulse is inversely proportional to the distance from the flux line.
For fast wavepackets, which spread only negligibly before their closest approach
to the flux line, the impulse is proportional to the probability density transverse
to the incident direction evaluated at the flux line. In this case, the transverse
component of the impulse gives a wavepacket analogue of Shelankov’s formula.
The direction of the impulse for both kinds of wavepacket is flux dependent.

We give two derivations of the force and impulse operators, the first a simple
derivation based on formal arguments, and the second a rigorous calculation of
wavepacket expectation values. We also show that the same expressions for the
force and impulse are obtained if the flux line is enclosed in an impenetrable
cylinder, or distributed uniformly over a flux cylinder, in the limit that the radius
of the cylinder goes to zero.

PACS numbers: 0365B, 0365Z

1. Introduction

There have been a number of investigations of the force exerted on a charged particle by an
Aharonov–Bohm flux line. Classically, of course, there is no force, so it, like the Aharonov–

0305-4470/01/040807+21$30.00 © 2001 IOP Publishing Ltd Printed in the UK 807



808 J P Keating and J M Robbins

Bohm effect itself, is essentially quantum mechanical, vanishing as h̄ → 0. Olariu and Popescu
(1983, 1985) show that for certain localized wavepackets (these are the fast wavepackets
described in section 4.2 below), the force, along with the momentum it imparts, is negligible
unless the centre of the wavepacket hits the flux line. Nielson and Hedegård (1995) and
Shelankov (2000) compute matrix elements of the force operator for stationary states of the
same energy. Shelankov (1998) calculates the transverse force on a stationary incident beam of
finite angular width using a paraxial approximation, a result we refer to as Shelankov’s formula.
This use of the paraxial approximation has been justified by Berry (1999), who computes
the asymptotic deflection of the beam from an exact representation. Peshkin (1981, 1989)
computes the expectation value of the force when the flux line is enclosed in an impenetrable
cylinder. Recent interest in this problem has been stimulated by the analogy with the Iordanskii
force (Iordanskii 1966) exerted on phonons by a vortex in a superfluid (see, e.g., Sonin
1976, 1997, Thouless et al 1997, Stone 2000), which has been the subject of some recent
debate.

In this paper we add to these investigations in several ways. First, we obtain exact
expressions for the Lorentz force operator due to an Aharonov–Bohm flux line and its matrix
elements between arbitrary stationary states; the restriction to on-shell matrix elements,
between stationary states of the same energy, agrees with previous results. We also obtain
an exact expression for the time integral of the force, the impulse operator, and compute
its expectation values for various kinds of wavepacket. We show that the force operator
can be simply derived, formally at least, from purely kinematic considerations, and give a
mathematically rigorous demonstration to justify the results obtained in this way.

The paper is organized as follows. In section 2, we give a formal derivation of the
(vector) Lorentz force operator due to an Aharonov–Bohm flux line. Pointing out that the
nominal magnetic field operator, (αhc/e)δ2(r), is incompatible with gauge invariance, we
show that that a modification of the canonical commutation relations restores gauge invariance
and yields the Lorentz force. An explicit formula for the expectation value for stationary states
follows directly. On-shell matrix elements between stationary states of the same energy are
seen to coincide with previous results. The transverse component of the force is shown to
coincide with Shelankov’s formula in the paraxial limit (see also Shelankov 2000). We then
compute (section 3) the impulse operator, the integral of the force operator in infinite forward
and backward time, in the position representation. In section 4 we compute the leading-
order expectation value of the impulse for two kinds of wavepacket. For slow wavepackets
(section 4.1), which spread more quickly than they move, the impulse is inversely proportional
to the initial distance between the wavepacket and the flux line, with magnitude and direction
depending periodically on the flux parameterα. By treating the deflection of a slow wavepacket
as a classical scattering, we obtain an expression for the scattering cross-section which,
surprisingly, coincides with the exact result. Fast wavepackets (section 4.2) move more quickly
than they spread, so much so that the fractional increase in their width as they pass the flux
line is small. In this case, the impulse is proportional to the transverse probability density
at the flux line, and its transverse component gives a wavepacket analogue of Shelankov’s
formula.

In the appendix, we give a rigorous derivation of the force and impulse expectation values
for a class of well behaved wavefunctions. In section 5, we compute matrix elements of
the force operator for two standard regularizations of the Aharonov–Bohm flux line, the first
where the flux is enclosed in an impenentrable cylinder, and the second where it is distributed
uniformly in a cylindrical tube. The Aharonov–Bohm results of sections 2 and 3 are recovered
in the limit that the radius of the cylinder goes to zero.
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2. Force operator

Consider a particle of charge e and massM moving in the xy-plane in a magnetic field along ẑ.
Quantum mechanically, the particle is described by the Hamiltonian H = 1

2MV · V , where
MV = P −eA/c is the kinetic momentum and A(r) is the vector potential. The force, i.e. the
rate of change of the kinetic momentum, is given by the appropriately symmetrized Lorentz
force operator,

F = 1

ih̄
[MV , H ] = e

2c
(V ∧ (B ẑ)− (B ẑ) ∧ V ) (1)

where the magnetic field operator is defined by

B = �0

2π ih̄2 [MVx,MVy]. (2)

Here �0 = 2πh̄c/e is the magnetic flux quantum. The usual commutation relations for
position and canonical momentum lead to the usual relation between the magnetic field and
the vector potential, namely B ẑ = ∇ ∧ A.

However, this relation is incorrect for the vector potential of an Aharonov–Bohm flux line
(since we are restricting to the plane, we should perhaps say ‘flux point’, but we will follow
conventional usage). For a flux line at the origin of strength α�0, and in a circularly symmetric
gauge, the vector potential is given by

A(r) = α
�0

2πr
φ̂. (3)

As is well known, physically meaningful quantities depend only on the fractional part, α̃, of
the flux parameter, α; a unit shift in the flux parameter, α → α + 1, is equivalent to the gauge
transformation ψ → Uψ , where

(Uψ)(r, φ) = eiφψ(r, φ). (4)

As a consequence, a physically observable operator O(α)which depends on the flux parameter
must transform under U according to

UO(α)U† = O(α + 1). (5)

For example, the kinetic momentum MV satisfies this relation, as is easily verified. As the
magnetic field operator (2) is expressed in terms of the commutator of components of kinetic
momentum, it must also satisfy (5). However, ∇ ∧ A, which is given by α�0δ

2(r) ẑ, clearly
does not satisfy (5); it is invariant under the gauge transformation U (as is any operator which
depends only on position), but is not periodic in α. It follows that substituting ∇ ∧ A for the
magnetic field in (1) cannot give the correct expression for the Lorentz force operator.

The problem is caused, of course, by the singularity at r = 0, and can be avoided by an
explicit calculation of the time rate of change of the expectation value of the kinetic momentum
for suitably chosen wavefunctions. This is done in the appendix. However, we can obtain the
same result more easily and more directly from formal arguments. If the usual canonical
commutation relations lead to a magnetic field operator which does not transform correctly
under gauge transformations, then the canonical commutation relations must be modified by
the flux line. In particular, we show below that, formally, the components of the canonical
momentum, px and py , do not commute—equivalently, the partial derivatives ∂x and ∂y do not
commute—in the presence of nonzero flux.

First, we note that the partial derivatives ∂x and ∂y certainly commute when applied to
smooth wavefunctions. That is,

[∂x, ∂y]ψ = 0 (6)
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for ψ(r) smooth. Applying the gauge transformation U to this relation m times, we obtain

[Um∂xU
†m,Um∂yU

†m](eimφψ) = 0. (7)

The partial derivatives transform according to

Um∂xU
†m = ∂x − im∂xφ Um∂yU

†m = ∂y − im∂yφ. (8)

Substituting (8) into (7), and using the differential version of Stokes’ theorem,

[∂x, ∂y]φ = (∇ ∧ ∇)zφ = 2πδ2(r) (9)

we obtain

[∂x, ∂y](eimφψ) = 2πδ2(r)imeimφψ = 2πδ2(r)∂φ(e
imφψ) (10)

where the second equality follows because ∂φψ vanishes at the origin for ψ(r) smooth. This
implies, formally, the operator relation

[∂x, ∂y] = 2πδ2(r)∂φ (11)

or, equivalently,

[Px, Py] = −2π ih̄δ2(r)L (12)

where L = (h̄/i)∂φ is the canonical angular momentum.
Using the modified commutation relation (12) to evaluate the magnetic field operator (2),

we obtain, instead of the classical relation B = α�0δ
2(r), the result

B = �0

2π ih̄2 [Px, Py] + (∇ ∧ A)z = −�0

h̄
δ2(r)� (13)

where

� ẑ = r ∧MV = (L− αh̄) ẑ (14)

is the kinetic angular momentum. It is evident that�, and henceB, satisfies the transformation
law (5).

Throughout this and the following sections, it will be convenient to represent vectors in
the xy-plane as complex scalars. For example, W = Wx x̂ + Wy ŷ will be represented by
W = Wx +iWy . If W is a vector of Hermitian operators (as opposed to real scalars), then W is
the non-Hermitian scalar operator whose Hermitian and anti-Hermitian parts are Wx and iWy

respectively. In this way, the kinetic momentum MV is represented by the scalar operator

MV = h̄

i
eiφ

(
∂r +

i∂φ + α

r

)
. (15)

It is useful to note that, in general, ẑ ∧ W is represented by iW .
We proceed to compute the expectation value of the Lorentz force. Substituting (13) for

the magnetic field and (15) for the kinetic momentum into the expression (1), we obtain

〈ψ |F |ψ〉 = −i
e

c
〈ψ |BV|ψ〉

= −2ih̄2

M

∫ 2π

0
dφ

∫ ∞

0
ψ∗(r, φ)

[
δ(r)

r
(∂φ − iα)eiφ

(
∂r +

i∂φ + α

r

)]
ψ(r, φ)r dr

(16)

where we have used δ2(r) = δ(r)/(πr). With ψ resolved into its angular momentum
components,

ψ(r, φ) =
∞∑

m=−∞
ψm(r)e

imφ (17)
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the integrals in (16) are trivially evaluated (note that
∫∞

0 δ(r) dr = 1
2 ), with the result

〈ψ |F |ψ〉 = 2πh̄2

M

∞∑
m=−∞

[
ψ∗
m+1(r)(m + 1 − α)

(
ψ ′
m(r)− (m− α)

r
ψm(r)

)]
r=0

. (18)

Like any vector operator, F couples only consecutive angular momentum components,m and
m + 1, and, as one would expect, depends only on the behaviour of the wavefunction at the
flux line. For well behaved wavefunctions, the leading-order behaviour of ψm(r) as r → 0 is
given by

ψm(r) ∼ Cmr
|m−α|. (19)

Sufficient conditions for (19) are discussed in the appendix. Here, we note that (19) ensures
that the energy density, ψ∗(r)(Hψ)(r), is finite at r = 0. Substituting (19) into (18), we
obtain

〈ψ |F |ψ〉 = 2πh̄2

M

∞∑
m=−∞

(m + 1 − α)(|m− α| − (m− α))C∗
m+1Cmr

|m+1−α|+|m−α|−1|r=0. (20)

The terms in the sum (20) vanish unless m = a, where a = α − α̃ denotes the integer
part of the flux parameter. Thus, only the ‘pinioned’ components of the wavefunction, ψa
and ψa+1—those whose angular momentum quantum numbers are nearest the flux parameter
α—contribute to the force expectation value (18). From (20),

〈ψ |F |ψ〉 = 4πh̄2

M
α̃(1 − α̃)C∗

a+1Ca (21)

or, equivalently,

F = 4πh̄2

M
α̃(1 − α̃)|ξa+1〉〈ξa| (22)

where the state |ξm〉 corresponds to the singular wavefunction

ξm(r, φ) = δ(r)

πr |m−α|+1
eimφ (23)

so that 〈ξm|ψ〉 = Cm. It is readily verified that the force operator (22) transforms according
to (5) under the gauge transformation (4). A rigorous derivation of the expectation value (21)
for suitably chosen wavefunctions is given in the appendix.

In the preceding derivation, the force operator due to a flux line, like the force for a
nonsingular potential, is derived from kinematics, specifically from the commutation relations.
The derivation does not require the solution of the Schrödinger equation. Thus, it is
straightforward to generalize to the case of more than one flux line (for which solutions of
the Schrödinger equation are, in general, not available); the force operator is just a sum of
contributions (22) centred around each flux line.

However, to calculate the force on stationary states, or the time dependence of the force
on nonstationary states, it is necessary to solve the Schrödinger equation. As is well known,
eigenstates of the Aharonov–Bohm Hamiltonian with energy h̄2k2/2M and angular momentum
mh̄ are given by

χk,m(r) = J|m−α|(kr)eimφ (24)

where Jν(z) is a Bessel function. From the small-z behaviour, Jν(z) ∼ (z/2)ν/&(ν + 1), and
the reflection formula, &(ν)&(1 − ν) = π/ sin πν, we obtain from (22) the matrix elements

〈χp,n|F |χk,m〉 = 2h̄2

M
kα̃p1−α̃ sin πα̃ δm,aδn,a+1. (25)
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For k = p, i.e. for stationary states with the same energy, we obtain the on-shell matrix
elements

〈χk,n|F |χk,m〉 = 2h̄2

M
k sin πα̃ δm,aδn,a+1 (26)

in agreement with results of Nielson and Hedegård (1995) and Shelankov (2000).
A general stationary state |(〉 is a superposition of eigenstates with k fixed, and may be

taken to be of the form

|(〉 =
∞∑

m=−∞
(−i)|m−α|bm|χk,m〉. (27)

For bm = 1, ((r) corresponds to a scattered plane wave incident from the right (Aharonov
and Bohm 1959). From (26), we obtain the expectation value

〈(|F |(〉 = 2ih̄2

M
e−iπα̃k sin πα̃ b∗

a+1ba. (28)

Shelankov (1998) has obtained an approximate formula for the transverse component of
the force acting on a stationary beam of finite angular width. His analysis is carried out in a
singular gauge, in which the vector potential vanishes everywhere except along the y-axis. A
stationary beam incident from the right (in fact, Shelankov takes the beam incident from the
left, but we revert to the convention of Aharonov and Bohm (1959)) is taken to be of the form
e−ikxψ(x, y). Treatingψxx as small compared to kψx amounts to a paraxial approximation, in
which the wave evolves freely in x (with x playing the role of time) for x �= 0, and is scattered
by the vector potential at x = 0. The change *py in the transverse kinematic momentum,
(h̄/i)

∫∞
−∞ ψ∗(x, y)ψy(x, y) dy, is then calculated to be

*py = h̄ sin 2πα
|ψin(0)|2∫∞

−∞ |ψin(y)|2 dy
(29)

where

ψin(y) = 1√
2πk

∫ ∞

−∞
a(ky)e

ikyy dky (30)

is the incident wave at x = 0+, expressed here in terms of its transverse Fourier
amplitudes a(ky). Multiplying *py by the incident flux, which is given paraxially by
(h̄k/M)

∫∞
−∞ |ψin(y)|2 dy, gives Shelankov’s formula for the transverse force,

F (S)y = h̄2

M
k sin 2πα̃|ψin(0)|2. (31)

We now show that the y-component of the exact force expectation value, i.e. the imaginary
part of (28), coincides with Shelankov’s formula (31) in the paraxial regime. (Shelankov (2000)
gives the same argument.) As discussed by Berry (1999), the state (27) can alternatively be
viewed as a superposition of scattered waves incident from the directions (cos θ,− sin θ), with
amplitudes A(θ) related to the coefficients bm according to

bm = 1√
2π

∫ π

−π
A(θ)ei(m−α)θ dθ. (32)

The paraxial approximation is valid for A(θ) strongly peaked around θ = 0, with angular
width w � 1. In this case, Berry (1999) has shown that A(θ) ∼ a(kθ). From (30) and (32),
it then follows that bm ∼ ψin((m− α)/k) for |m− α| � 1/w, so that b∗

a+1ba ∼ |ψin(0)|2.
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3. Impulse operator

For nonstationary wavepackets ψ(r), whose wavefunctions are not eigenfunctions of the
Hamiltonian, the expectation value of the force does not itself have much physical significance.
It depends on the behaviour of the wavefunction near the flux line, regardless of where the
wavepacket is localized, and can oscillate rapidly as the wavepacket evolves. Of greater
physical interest is the impulse imparted to the particle over the course of its evolution, either
in the past or future. Let

F(t) = eiHt/h̄Fe−iHt/h̄ MV(t) = eiHt/h̄MVe−iHt/h̄ (33)

denote the time-evolved force and kinetic momentum operators. Then MV̇(t) = F(t). The
forward (+) and backward (−) impulse operators are defined by

I± = MV(±∞)−MV(0) =
∫ ±∞

0
F(t) dt. (34)

Let us compute the kernel of the impulse operator in the position representation, I±(s, r) =
〈s|I±|r〉. From the completeness relation,

1

2π

∞∑
m=−∞

∫ ∞

0
|χk,m〉〈χk,m|k dk = 1 (35)

we obtain

I±(s, r) = 1

4π2

∞∑
m=−∞

∞∑
n=−∞

∫ ±∞

0
dt

×
∫ ∞

0

∫ ∞

0
〈s|χp,n〉〈χp,n|F |χk,m〉〈χk,m|r〉 exp (ih̄(p2 − k2)t/2M)k dk p dp.

(36)

From the expression (25) for the matrix elements 〈χp,n|F |χk,m〉, the only contribution to the
double sum in (36) is from the term n = a + 1, m = a. Substituting the eigenfunctions (24),
and letting (s, θ) denote the polar coordinates of s, we obtain

I±(s, r) = ± h̄
2 sin πα̃

2π2M
exp (i(a + 1)θ − iaφ)

∫ ∞

0
dt

×
∫ ∞

0
exp

(
±i
h̄p2

2M
t

)
J1−α̃(ps)p2−α̃ dp

∫ ∞

0
exp

(
∓i
h̄k2

2M
t

)
Jα̃(kr)k

1+α̃ dk.

(37)

The k- and p-integrals are of the form (Abramowitz and Stegun 1970)∫ ∞

0
e−c2u2

Jν(bu)u
ν+1 du = bν

(2c2)ν+1
e−b2/4c2

. (38)

Substituting this result into (37), we obtain

I±(s, r) = iM2

2π2h̄
sin πα̃ exp (i(a + 1)θ − iaφ ∓ iπα̃)s1−α̃r α̃

×
∫ ∞

0
exp

(
∓i
M(r2 − s2)

2h̄t

)
t−3 dt. (39)

With the substitution t = 1/w, the remaining integral in (39) is of the elementary form

lim
ε→0+

∫ ∞

0
exp

(
−ε ± i(r2 − s2)w

σ 2

)
w dw = σ 4

(0+ ± i(r2 − s2))2
(40)
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with σ 2 = 2h̄/M . Substituting (40) into (39), we obtain

I±(s, r) = 2ih̄

π2
sin πα̃ exp (i(a + 1)θ − iaφ ∓ iπα̃)

rα̃s1−α̃

(0+ ± i(r2 − s2))2
. (41)

One can verify that this expression transforms correctly, i.e. according to (5), under the gauge
transformation (4).

The denominator in (41) can be alternatively expressed as
1

(0+ ± i(r2 − s2))2
= P ′(1/(r2 − s2))± iπδ′(r2 − s2). (42)

Here P ′(1/x), the derivative of the principal part, acts on functions f (x) according to∫ ∞

−∞
f (x)P ′(1/x) dx = −

∫ ∞

−∞
f ′

odd(x)/x dx (43)

where f ′
odd(x) = 1

2 (f
′(x) − f ′(−x)) denotes the odd part of f ′(x). For subsequent

calculations, however, the integral representation (40) will be more convenient.

4. Expectation values of impulse for wavepackets

We parametrize wavepackets by their position R, width σ and kinetic momentum h̄k. A
convenient form is

ψ(r) = 1

σ
f

(
r − R

σ

)
exp (−ik · r + iαφ). (44)

Heref (u) is a smooth normalized function localized at the origin with unit width and vanishing
average (dimensionless) momentum, i.e.∫ ∫

f ∗f d2u = 1
∫ ∫

f ∗fu d2u = 0∫ ∫
f ∗f u2 d2u = 1

∫ ∫
f ∗∇f d2u = 0.

(45)

We assume that σ � R, so that the wavepacket ψ(r) is localized away from the flux line.
The phase factor exp (iαφ) in (44) ensures that h̄k is the kinetic, rather than the canonical,
momentum of the wavepacket; its branch is chosen so that the phase factor is continuous over
the region where ψ(r) is appreciable.

From (41) and (44), the expectation value of the impulse is given by

〈I±〉(R,k, σ, α) = 〈ψ |I±|ψ〉 = 2ih̄

π2σ 2
e∓iπα̃ sin πα̃

×
∫ ∫ ∫ ∫

f ∗
(

s − R

σ

)
f

(
r − R

σ

)
eik·(r−s)

(0+ ± i(r2 − s2))2

×ei(1−α̃)θ+iα̃φrα̃s1−α̃ d2r d2s. (46)

Since f has unit width, the integrand in (46) is appreciable only for |s − R| ∼ σ and
|r − R| ∼ σ . In this region, we can, to leading order in σ/R, replace the phase factors
exp (i(1 − α̃)θ) and exp (iα̃φ) by exp (i(1 − α̃)�) and exp (iα̃�), respectively, where � is
the polar angle of R. Likewise, we can replace the factor rα̃s1−α̃ by R. With the change
of variables u = (r − R)/σ and v = (s − R)/σ and the integral representation (40), (46)
becomes

〈I±〉 = 2ih̄

π2

R

σ 2
ei�∓iπα̃ sin πα̃

×
∫ ∞

0
dww

∣∣∣∣
∫ ∫

f (u) exp

(
iσk · u ∓ 2iw

R · u

σ
∓ iwu2

)
d2u

∣∣∣∣
2

. (47)
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Thus, the direction of the impulse, arg 〈I±〉, is given by

arg 〈I±〉 = � + ( 1
2 ∓ α̃)π. (48)

For α̃ = 1
2 , the forward impulse is directed away from the flux line, and the backwards impulse

towards the flux line.
There are two parameter regimes where the expression (47) has a simple asymptotic form,

namely kσ � 1, which corresponds to slow wavepackets, and kσ � R/σ , which corresponds
to fast wavepackets. These cases are discussed separately below.

4.1. Slow wavepackets

The condition kσ � 1 implies that the wavepacket spreads (with velocity ∼ h̄/Mσ ) more
quickly than it moves (with velocity h̄k/M). Since f has unit width, the integrand in (47) is
appreciable only for u of order one. In this case, for kσ � 1, the phase factor exp(iσk · u) is
nearly equal to one. On the other hand, the phase factor exp(∓2iwR · u/σ) oscillates rapidly
in this region, and hence renders the integral small, unless w is small, of order σ/R. For w of
order σ/R, the phase factor exp(iu2w) is nearly equal to one for u of order one. To leading
order in σ/R and kσ , (47) becomes

〈I±〉 = 2ih̄

π2

R

σ 2
ei�∓iπα̃ sin πα̃

∫ ∞

0
dww

∣∣∣∣
∫ ∫

f (u)e∓2iwR·u/σ d2u

∣∣∣∣
= 8ih̄

R

σ 2
ei�∓iπα̃ sin πα̃

∫ ∞

0

∣∣∣∣f̃
(

± 2R

σ
w

)∣∣∣∣
2

w dw (49)

where

f̃ (ξ) = 1

2π

∫ ∫
f (u)e−iξ·u d2u (50)

denotes the normalized Fourier transform of f (u). Letting

ρ̃( ê) =
∫ ∞

0
|f̃ (ξ ê)|2ξ dξ (51)

denote the probability distribution for the direction, ê, of the dimensionless momentum,
ξ = ξ ê, we can write

〈I±〉 = 2ih̄

R
ei�∓iπα̃ sin πα̃ ρ̃(± R̂). (52)

Note that if f (u) is circularly symmetric, then ρ̃( ê) is equal to 1/2π .
To leading order in σ/R and kσ , the impulse (52) is independent of the width and

momentum of the wavepacket, and is of order h̄/R (i.e. inversely proportional to the distance
from the flux line). This is much smaller than the dispersion of the momentum, which is of
order h̄/σ . Therefore, to detect the impulse on slow wavepackets experimentally, one would
have to perform a large number of measurements (on the order of (R/σ)2) of the asymptotic
momentum on an ensemble of identically prepared systems.

By treating the motion of the centre of a slow wavepacket as a classical trajectory, we can
derive an expression for the scattering cross-section σ(θ) using the classical formula,

σ(θ) =
∣∣∣∣dbdθ

(θ)

∣∣∣∣ . (53)

Here b is the impact parameter, and θ is the angular direction of the outgoing trajectory.
Consider a slow wavepacket (44) centred on the y-axis at Y ŷ at t = 0 (thus, R = |Y | and
� = sgn(Y )π/2), moving in the − x̂ direction with kinetic momentum h̄k. For simplicity,
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V0

V

V

Figure 1. At t = 0 the wavepacket is centred at Y ŷ and moves in the − x̂ direction. β± are the
angles of the incoming and outgoing velocities with respect to − x̂.

we take f (u) to be circularly symmetric, so that ρ̃ = 1/2π . Let β− denote the angle between
the velocities at t = −∞ and 0, and β+ the angle between the velocities at t = 0 and ∞ (see
figure 1). From (52), these are given by

cot β± = ±Re 〈ψ |I±|ψ〉 − h̄k

Im 〈ψ |I±|ψ〉 = sin πα̃ cosπα̃ − πkY

sin2 πα̃
(54)

(thus β− = β+). Because the impulse is circularly symmetric, the angles β± are unchanged if
we rotate the entire system so that the incoming velocity, at t = −∞, is in the − x̂ direction.
In this case, the direction of the outgoing beam is given by

θ = π + β+ + β− = π + 2β+. (55)

To determine the impact parameter b, we appeal to classical angular momentum
conservation, MV−b = sgnbMV0R0, where V− is the speed at t = −∞, and R0 and V0 are
the distance and speed at the point of closest approach to the flux line. For the Aharonov–Bohm
Hamiltonian (and, indeed, for any purely magnetic Hamiltonian), the speed V = √

V · V is
a conserved quantity. Thus b = sgnb R0. We take the point of closest approach to occur at
t = 0 (when the velocity of the wavepacket is orthogonal to its position), so that b = Y . Then,
from (53)–(55),

σ(θ) =
∣∣∣∣dbdθ

∣∣∣∣ =
∣∣∣∣dθdb

∣∣∣∣
−1 ∣∣∣∣2dβ+

dY

∣∣∣∣
−1

=
∣∣∣∣2 sin2 β+

d(cot β+)

dY

∣∣∣∣
−1

= sin2 πα̃

2πk cos2 θ/2
. (56)

Surprisingly, the expression (56) agrees with the exact result found by Aharonov and
Bohm (1959). Of course, the preceding should not be regarded as a legitimate derivation of
the scattering cross-section. Apart from certain ad hoc elements (e.g., circularly symmetric
wavepacket and the determination of the impact parameter), a proper derivation of the cross-
section from time-dependent solutions of the Schrödinger equation requires wavepackets
(unlike the slow ones used here) whose momentum is sharp. Still, it is interesting to ask
whether or not this agreement is purely fortuitous.

4.2. Fast wavepackets

A wavepacket initially at a distance R from the flux line with kinetic momentum h̄k reaches
its point of closest approach to the flux line after a time τ of order R/(h̄k/M). It spreads at
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a speed W of order h̄/Mσ . Thus, at closest approach it will have spread a distance of order
Wτ ∼ R/kσ . For this to be much less than the width σ , we require R � kσ 2, which is just
the condition for fast wavepackets.

Let

L± =
∣∣∣∣
∫ ∫

f (u) exp (iσk · u ∓ 2iwR · u/σ ∓ iwu2) d2u

∣∣∣∣
2

(57)

denote the u-integral which appears in the impulse expectation value (47). Because f is of
unit width, the integrand is appreciable only for u of order 1. For kσ � R/σ , the phase factor
exp(iσk · u) in (47) is rapidly oscillating, and hence leads to a vanishingly small integral,
unless it is balanced by the phase factor exp(∓i2iwR · u/σ). For such a balancing to take
place, w must be large, of order kσ 2/R. Therefore, the quadratic phase factor exp(∓iwu2)

is rapidly oscillating, so (57) can be evaluated using the stationary phase approximation. To
leading order in 1/w ∼ R/(kσ 2), we obtain

L± = π2

w2

∣∣∣∣f
(∓σ 2k/2w − R

σ

)∣∣∣∣
2

. (58)

Substituting into (47), we obtain

〈I±〉 = 2ih̄
R

σ 2
ei�∓iπα̃ sin πα̃

∫ ∞

0

∣∣∣∣f
(∓σ 2k/2w − R

σ

)∣∣∣∣
2

dw

w

= 2ih̄Rei�∓iπα̃ sin πα̃
∫ ∞

0
|ψ(∓r k̂)|2 dr

r
(59)

where we have used (44) to express the integral in terms of the wavefunction ψ(r). Note that
ψ(r) behaves for small r as rα̃ or r1−α̃ (cf (19)), so that the integral in (59) is convergent.

In what follows, let us assume for concreteness that k is directed along − x̂, so that the
wavepacket is moving to the left. We write R = X x̂ + Y ŷ. Unless the wavepacket is centred
near the x-axis (specifically, unless |Y | ∼ σ ), ψ(∓r k̂) will be negligible over the range of
integration in (59). Thus, to leading order in σ/R, we may take Rei� = X. Substituting this
result into (59), we obtain the expression

〈I±〉 = 2ih̄e∓iπα̃X sin πα̃
∫ ±∞

0
|ψ(x, 0)|2 dx

x
(60)

for the impulse.
Since the wavepacket is centred nearX x̂, the x-integral in (60) is negligible unlessX > 0

in the forward (+) case (so that the wavepacket is moving towards the flux line), or unlessX < 0
in the backward (−) case (so that the wavepacket is moving away from the flux line). Assuming
that ±X > 0, the main contribution to the integral comes from |x−X| ∼ σ , so that, to leading
order in σ/R, we can replace the factor 1/x by 1/X in (60), and extend the lower limit of the
x integral to ∓∞. Letting

Ptrans(y) =
∫ ∞

−∞
|ψ(x, y)|2 dx (61)

denote the wavepacket’s probability density in y (the direction transverse to the incident
velocity), we obtain, to leading order in σ/R and R/(kσ 2), the expression

〈I±〉 = ±2ih̄e∓iπα̃ sin πα̃ >(±X)Ptrans(0) (62)

for the impulse on fast wavepackets. Here >(x) is the unit step function.
The impulse (62) is independent of the wavenumber k. To leading order, it vanishes for

wavepackets which miss the flux line (e.g., |Y | � σ , or ±X > 0), as shown previously by



818 J P Keating and J M Robbins

Olariu and Popescu (1983, 1985). For fast wavepackets which hit the flux line, taking Ptrans(Y )

to be of order 1/σ for |Y | ∼ σ , we obtain that the impulse is of order h̄/σ . Therefore, it is of
the same order as the dispersion in momentum, in contrast with the case of slow wavepackets,
for which the impulse is much smaller (by a factor of σ/R) than the dispersion.

The y-component of the forward impulse, i.e. the imaginary part of (62), is given in the
forward case by

〈ψ |I+y |ψ〉 = ±h̄ sin 2πα̃ >(±X)Ptrans(y). (63)

This can be regarded as an analogue in the time domain of Shelankov’s formula (29) for the
transverse momentum imparted to a stationary paraxial beam.

5. Enclosed and distributed fluxes

Two well known regularizations of the Aharonov–Bohm flux line are to enclose the flux in an
impenetrable cylindrical barrier, or to distribute the flux uniformly in a cylindrical tube. Here
we show that the force and impulse operators in both cases approach the Aharonov–Bohm
limit, in a sense to be explained, as the radius ε of the cylinder approaches zero.

In a circularly symmetric gauge, the vector potential for both models is of the form
Aε(r) = Aε(r) φ̂. The kinetic momentum is given by

MVε = M(V ε
x + iV ε

y ) = h̄

i
eiφ

(
∂r +

i∂φ
r

+
2π

�0
Aε(r)

)
(64)

and the regularized Hamiltonian by

Hε = 1

2
M((V ε

x )
2 + (V ε

y )
2) = − h̄2

2M

(
∂2
r +

∂r

r
+

(
i∂φ
r

+
2π

�0
Aε(r)

)2
)
. (65)

The eigenfunctions of the Hamiltonian and kinetic angular momentum, with energy E =
h̄2k2/2M and kinetic angular momentum mh̄, are of the form

χεk,m(r) = Rεk,m(r)e
imφ. (66)

The radial eigenfunctionsRεk,m(r) are taken to be real and normalized, like the Aharonov–Bohm
radial eigenfunctions J|m−α|(kr), according to∫ ∞

0
Rεp,m(r)R

ε
k,m(r)r dr = δ(k − p)

k
. (67)

These conditions determine the radial eigenfunctions up to an overall sign, which is fixed by
requiring that Rεk,m(r) approach J|m−α|(kr) as ε approaches zero.

Let cm(k) denote a smooth, normalized probability amplitude for energy and angular
momentum. Let ψ(r) and ψε(r) denote the corresponding coordinate wavefunctions for the
Aharonov–Bohm and regularized Hamiltonians, respectively. That is,

ψ(r) = 1

2π

∞∑
m=−∞

∫ ∞

0
cm(k)J|m−α|(kr)eimφk dk (68)

ψε(r) = 1

2π

∞∑
m=−∞

∫ ∞

0
cm(k)R

ε
k,m(r)e

imφk dk. (69)

From the preceding discussion, it is clear thatψε(r) approachesψ(r)pointwise as ε approaches
zero. It turns out that their force and impulse expectation values also coincide as ε → 0, i.e.

lim
ε→0

〈ψε |F ε |ψε〉 = 〈ψ |F |ψ〉 (70)

lim
ε→0

〈ψε |Iε±|ψε〉 = 〈ψ |I±|ψ〉. (71)
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Note that (70) and (71) do not imply, nor is it the case, that the operators F ε and Iε± approach
their Aharonov–Bohm counterparts, F and I±, as ε approaches 0. Indeed, neither does the
regularized HamiltonianHε approach the Aharonov–Bohm HamiltonianH ; given ε > 0, one
can construct wavefunctions whose energy expectation values with respect toHε andH differ
by arbitrarily large amounts.

Instead of (70) and (71), we show below, for the enclosed and distributed fluxes separately,
that the eigenstate matrix elements of the regularized force operator approach the Aharonov–
Bohm limit as ε → 0, i.e.

lim
ε→0

〈χεp,n|F ε |χεk,m〉 = 〈χp,n|F |χk,m〉 = 2h̄2

M
sin πα̃kα̃p1−α̃δm,aδn,a+1. (72)

Formally, of course, (70) and (72) are equivalent. However, for the sake of brevity we shall
omit the details required for a rigorous demonstration. These details are straightforward to
supply, and are similar to those given in the main part of the appendix.

The result (71) for the impulse follows from the corresponding result (70) for the force,
once it has been established that the force expectation values 〈ψε |F ε(t)|ψε〉 and 〈ψ |F(t)|ψ〉
are integrable in time. In the appendix it is shown that, in the Aharonov–Bohm case, the force
expectation value decays as 1/t2; a similar argument may be given for the regularized force.

5.1. Enclosed flux

The kinetic momentum MVε and Hamiltonian Hε have the same operational form as in the
Aharonov–Bohm case, but act on wavefunctions defined on r � ε which vanish at r = ε. For
two such wavefunctions, ψε(r) and ηε(r), assumed to be smooth and normalized, we have

〈ψε |F ε |ηε〉 = d

dt
〈ψε |MVεηε〉 = i

h̄
[〈Hεψε |MVεηε〉 − 〈ψε |MVε(H εηε)〉]

= i

h̄
(〈Hεψε |MVεηε〉 − 〈ψε |Hε(MVεηε)〉). (73)

The last equality follows from the fact that the commutator [Hε,MVε] is proportional to the
Lorentz force operator (1), which vanishes for the enclosed flux. However, the final expression
in (73) does not vanish; the relation 〈Hεψε |ξ ε〉 = 〈ψε |Hεξε〉, where

ξ ε(r) = (MVεηε)(r) (74)

need not hold, because ξ ε(r) need not vanish at r = ε (alternatively, |ξ ε〉 is not in the domain
of Hε). Indeed, integration by parts in (65) gives

〈Hεψε |ξ ε〉 − 〈ψε |Hεξε〉 = − h̄2

2M

∫ 2π

0

∫ ∞

ε

[(
ψε∗
rr +

ψε∗
r

r
+
(iψε∗

φ + αψε∗)

r2

)
ξ ε

−ψε∗
(
ξ εrr +

ξ εr

r
+
(iξ εφ + αξε)2

r2

)]
r dr dφ

= − h̄2

2M

∫ 2π

0
ψε∗
r (ε, φ)ξ

ε(ε, φ) dφ. (75)

From (64) and (74),

ξ ε(ε, φ) = h̄

i
eiφηr(ε, φ). (76)

Substituting this result into (75), we obtain

〈ψε |F ε |ηε〉 = h̄2

2M
ε

∫ 2π

0
ψε∗
r (ε, φ)η

ε∗
r (ε, φ)e

iφ dφ (77)
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a result obtained previously by Peshkin (1981, 1989). Note that if we were to substitute,
for ψε(r) and ηε(r), the leading-order behaviour (19) of Aharonov–Bohm wavefunctions, we
would recover, formally, the Aharonov–Bohm result (21) for the force expectation value.

Instead, we take ψε(r) and ηε(r) in (77) to be eigenfunctions of the regularized
Hamiltonian. Then

〈χεp,n|F ε |χεk,m〉 = πh̄2

M
εRεp,m+1

′
(ε)Rεk,m

′
(ε)δn,m+1. (78)

(Strictly speaking, this is not legitimate, as there would appear boundary terms at r = ∞
in (75). However, these would vanish when we consider expectation values, as in (70).)

To evaluate (78) we need the derivatives of the radial eigenfunctions at r = ε. The radial
wavefunctions themselves are given by

Rεk,m(r) = Cεk,m(N|m−α|(kε)J|m−α|(kr)− J|m−α|(kε)N|m−α|(kr)) (79)

where Nν(z) is the Neumann function. The constant Cεk,m is determined by the normalization
condition (67), and is given by

Cεk,m = (J 2
|m−α|(kε) +N2

|m−α|(kε))
− 1

2 (80)

and, to leading order in ε, by

Cεk,m = |Nm−α(kε)|−1 = π

&(|m− α|)
(
kε

2

)|m−α|
. (81)

The Wronskian relation, Jν(z)N ′
ν(z)− J ′

ν(z)Nν(z) = 2/(πz), implies that

Rεk,m
′
(ε) = − 1

π(ε/2)
Cεk,m Rεp,m+1

′
(ε) = − 1

π(ε/2)
Cεp,m+1. (82)

Substituting (81) and (82) into (78), we obtain, to leading order in ε,

〈χεp,n|F ε |χεk,m〉 = 2πh̄2

M

k|m−α|p|m+1−α|

&(|m + 1 − α|)&(|m− α|)
(ε

2

)|m+1−α|+|m−α|−1
δm,n+1. (83)

In the limit ε → 0, only them = a term survives, and the reflection formula for the &-function
gives

lim
ε→0

〈χεp,n|F ε |χεk,m〉 = 2πh̄2

M

kα̃p1−α̃

&(1 − α̃)&(α̃)
δm,aδn,a+1

= 2h̄2

M
sin πα̃ kα̃p1−α̃δm,aδn,a+1 (84)

in accord with (72).

5.2. Distributed flux

The distributed flux model was used by Nielsen and Hedegård (1995) to obtain, from the force
balance equations, the on-shell matrix elements of the force in the limit ε → 0. Here we carry
out a different calculation to obtain the general matrix elements of the force.

It suffices to consider the case α > 0 (the case of negative flux is obtained from time-
reversal). The vector potential is given by

Aε(r) = α�0r/(2πε
2) r < ε (85)

= α�0/2πr r � ε (86)

corresponding to the magnetic field Bε(r) = (α�0/πε
2)>(ε − r), where >(x) is the unit

step function. In this case, the force operator is just the Lorentz force (1). It is convenient to
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introduce the dimensionless radial coordinate u = r2/ε2, so that the interior of the flux tube
is given by 0 � u � 1. The kinetic momentum is given by

MVε = h̄

i
eiφ u

1/2

ε

(
2∂u +

i∂φ
u

+ α

)
. (87)

Then

F = −i
e

2Mc
(MVεBε + BεMVε)

= − 2h̄2

Mε3
αeiφu

1
2

[
>(1 − u)

(
2∂u + i

∂φ

u
+ α

)
− δ(u− 1)

]
. (88)

The matrix elements of the force are given by

〈χεp,n|F ε |χεk,m〉 = −2π
h̄2

Mε
αδn,m+1

×
[ ∫ 1

0
T εp,m+1

(
2T εk,m

′ +

(
α − m

u

)
T εk,m

)
u

1
2 du− t εp,m+1t

ε
k,m

]
(89)

where T εk,m(u) denotes the radial eigenfunction expressed in terms of the scaled variable u,
and t εk,m = T εk,m(1).

Inside the flux tube, the radial eigenfunctions are given by Landau and Lifshitz (1965)

T εk,m(u) = Cεk,me−αu/2u|m|/2M
(

− (kε)
2

4α
+

|m| −m + 1

2
, |m| + 1, αu

)
0 � u � 1 (90)

where M(a, b, z) is the confluent hypergeometric function (Abramowitz and Stegun 1970).
Outside the flux tube,

Rεk,m(r) = Dε
k,mJ|m−α|(kr) + Eεk,mN|m−α|(kr) r � ε. (91)

The coefficients Cεk,m,Dε
k,m andEεk,m are determined by requiring the radial eigenfunction and

its first derivative to be continuous at r = ε (the second derivative is then continuous there as
well, as it turns out), and by the normalization condition

(Dε
k,m)

2 + (Eεk,m)
2 = 1 (92)

which follows from (67).
To evaluate the force matrix element (89), we only require the function inside the flux

cylinder. Straightforward algebra gives the coefficient Cεk,m, to leading order in ε, as

Cεk,m = 2eα/2( 1
2kε)

|m−α|

&(|m− α|)[(|m− α| + |m| − α)fm + 2f ′
m]

(93)

where

Fm(u) = M( 1
2 (|m| −m + 1), |m| + 1, αu) (94)

and fm and f ′
m denote the values of Fm and F ′

m at u = 1.
Substituting (90) and (93) into (89), we find that 〈χεp,n|F ε |χεk,m〉 is of order ε|m−α|+|m+1−α|−1,

and therefore vanishes in the limit ε → 0 unless m = a. We obtain

lim
ε→0

〈χεp,n|F ε |χεk,m〉 = 2h̄2

M
sin πα̃ kα̃p1−α̃ L(α)

R(α)
δm,aδn,a+1 (95)

where

L(α) = −2α
∫ 1

0
F ′
aFa+1eα(1−u)ua+1 du + αfafa+1

R(α) = 2(p(1)fa+1 + f ′
a+1f

′
a)

(96)
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and

p(u) = a + 1 − αu. (97)

As we show below, L(α) = R(α), or, equivalently,∫ 1

0
2αF ′

aFa+1eα(1−u)ua+1 du = αfafa+1 − 2(p(1)fa+1 + f ′
a+1)f

′
a. (98)

With this identity, (95) gives the required result (72).
To establish the identity (98), it is convenient to express Fa+1 in terms of Fa by means of

the recurrence relation (Abramowitz and Stegun 1970)

(a + 1
2 )M(

1
2 , a + 2, u) = (a + 1)(M( 1

2 , a + 1, u)−M ′( 1
2 , a + 1, u)) (99)

which implies that

(a + 1
2 )Fa+1 = (a + 1)(Fa − F ′

a/α). (100)

With the differential equation

uF ′′
a = −p(u)F ′

a +
α

2
Fa (101)

it is straightforward to show that the integrand on the left-hand side of (98) is given byW ′(u),
where

W(u) = 2
a + 1

a + 1
2

ua+1eα(1−u)
(α

2
F 2
a − p(u)FaF

′
a − uF ′

a

2
)
. (102)

W(0) vanishes, whereas W(1), with the aid of (100) and (101), is seen to be equal to the
right-hand side of (98).
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Appendix. Wavepacket expectation values

The force and impulse due to an Aharonov–Bohm flux line can be calculated rigorously for
suitably well behaved wavefunctions ψ(r). We will take these to be such that

cm(k) = 〈χk,m|ψ〉 is smooth in k and falls off, along with its derivatives,

faster than any power of k and m. (A.1)

Using standard arguments, one can show that (A.1) implies the following properties of ψ(r)
and (Hψ)(r), where H is the Aharonov–Bohm Hamiltonian:

ψ(r) and (Hψ)(r) are smooth for r > 0 and fall off, along with their

derivatives, faster than any power of r (A.2)

and

ψm(r) = Cmr
|m−α| + O(r |m−α|+1)

(Hψ)m(r) = Dmr
|m−α| + O(r |m−α|+1)

(A.3)

where, in general,

ηm(r) = 1

2π

∫ 2π

0
η(r, φ)e−imφ dφ. (A.4)
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(In fact, properties (A.2) and (A.3) are also shared by (Hjψ)(r), for j > 1. The argument to
follow would hold under weaker conditions, but we assume (A.1) for simplicity.)

The expectation value of force is given by

〈ψ |F |ψ〉 =
∫ ∫

(ψ̇∗(MVψ) + ψ∗(MVψ̇)) d2r

= 1

ih̄

∫ ∫
(−(Hψ∗)(MVψ) + ψ∗(MVHψ)) d2r (A.5)

where MV is given by (15). From (A.2) and (A.3), it is evident that the r-integral in (A.5)
converges absolutely. This allows us to introduce a factor exp (−ε2r2) in the integrand, and then
take the limit of the integral as ε → 0. This Gaussian factor will justify subsequent reorderings
of operations. Note that the integral cannot be expressed in terms of the expectation value of
the commutator [H,MV], because of the singularity in the radial derivative of ψ(r) at the
origin (specifically, (MVψ)(r) is not in the domain of H ).

We introduce the eigenfunction expansion

ψ(r) = 1

2π

∞∑
m=−∞

∫ ∞

0
cm(k)J|m−α|(kr)eimφk dk (A.6)

and a similar expansion for (Hψ)(r), with cm(k) replaced by −(h̄2k2/2M)cm(k). Using
standard arguments, one can show that (A.1) implies that the differential operator MV , when
applied to ψ and Hψ , can be taken inside the m-sum and k-integral. The recurrence relation,

Jν±1(z) = ∓
(
J ′
ν(z)∓ ν

z
Jν(z)

)
(A.7)

implies that

MV(J|m−α|(kr)eimφ) =
{

sgn(m− a)ih̄kJ|m+1−α|(kr)ei(m+1)φ m �= a

−ih̄kJα̃−1(kr)e
i(a+1)φ m = a.

(A.8)

Substituting (A.6) and (A.8) into (A.5), along with the eigenfunction expansion of ψ∗(r) with
coefficients c∗n(p), we obtain

〈ψ |F |ψ〉 = lim
ε→0

h̄2

8π2M

∫ ∞

0
e−ε2r2

r dr
∫ 2π

0
dφ

∞∑
m=−∞

∞∑
n=−∞

ei(m+1−n)φ
∫ ∞

0
dp
∫ ∞

0
dk

×c∗
n(p)cm(k)k

2p(k2 − p2)J|n−α|(pr)

×
{

sgn(m− a)J|m+1−α|(kr) m �= a

−Jα̃−1(kr) m = a.
(A.9)

The sums and integrals in (A.9) are uniformly and absolutely convergent, and can be
interchanged. On performing theφ-integral, the sum onn collapses to the single termn = m+1.
We obtain

〈ψ |F |ψ〉 = h̄2

4πM
lim
ε→0

∞∑
m=−∞

∫ ∞

0

∫ ∞

0
Kε
m(k, p)c

∗
m+1(p)cm(k) dk dp (A.10)

where, for m �= a,

Kε
m(k, p) = sgn(m− a)k2p(k2 − p2)

∫ ∞

0
e−ε2r2

Jν(pr)Jν(kr)r dr ν = |m− α + 1|
(A.11)

and, for m = a,

Kε
a (k, p) = k2p(p2 − k2)

∫ ∞

0
e−ε2r2

Jν(pr)J−ν(kr)r dr ν = 1 − α̃. (A.12)
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Below, in appendix A.1, we show that the contributions from the m �= a terms vanish in the
limit, i.e.

lim
ε→0

∑
m �=a

∫ ∞

0

∫ ∞

0
Kε
m(k, p)c

∗
a+1(p)ca(k) dk dp = 0 (A.13)

while, in appendix A.2, we show for the m = a term that

lim
ε→0

∫ ∞

0

∫ ∞

0
Kε
a (k, p)c

∗
a+1(p)ca(k) dk dp

= 2

π
sin πα̃

∫ ∞

0

∫ ∞

0
k1+α̃p2−α̃c∗

a+1(p)ca(k) dk dp. (A.14)

Substitution of (A.13) and (A.14) into (A.10) gives

〈ψ |F |ψ〉 = h̄2

2π2M
sin πα̃

∫ ∞

0

∫ ∞

0
k1+α̃p2−α̃c∗

a+1(p)ca(k) dk dp. (A.15)

This is equivalent to the matrix element (25), obtained formally in section 2.
We note that, with ε = 0, the integrals in (A.11) and (A.12) correspond to singular (i.e. not

absolutely convergent) cases of the discontinuous Weber–Schafheitlin integral (Abramowitz
and Stegun 1970). Formal evaluation of these integrals would give (A.13) and (A.14)
immediately. The arguments in appendix A.1 and A.2 serve to justify these formal results.

To obtain the force expectation value (21), we express ca(k) and c∗
a+1(p) in (A.15) in terms

of ψ(r) to obtain

〈ψ |F |ψ〉 = 2h̄2

M
sin πα̃ lim

ε→0

∫ ∞

0

∫ ∞

0
k1+α̃p2−α̃e−ε2(k2+p2)

×
(∫ ∞

0
ψ∗
a+1(s)J1−α̃(ps)s ds

)(∫ ∞

0
ψa(r)Jα̃(kr)r dr

)
dk dp. (A.16)

Note that the convergence factor exp (−ε2(k2 + p2)) can be introduced, and the limit ε → 0
taken outside the integral, since, by (A.1), the k- and p-integrals in (A.15) are absolutely
convergent. By (A.2) and (A.3), the r- and s-integrals in (A.16) are absolutely convergent, so
that, for ε > 0, we can interchange the order of integration. The k- and p-integrals can be
evaluated using (38), with the result

〈ψ |F |ψ〉 = 2h̄2

M
sin πα̃ lim

ε→0

∫ ∞

0

(
ψa(r)

rα̃

)
e−r2/4ε2

(
r2

4ε2

)α̃
d

(
r2

4ε2

)

×
∫ ∞

0

(
ψ∗
a+1(s)

s1−α̃

)
e−s2/4ε2

(
s2

4ε2

)1−α̃
d

(
s2

4ε2

)

= 2πh̄2

M
sin πα̃CaC

∗
a+1&(1 + α̃)&(2 − α̃)

= 4πh̄2

M
α̃(1 − α̃)CaC

∗
a+1 (A.17)

where the coefficients Ca and Ca+1 are given in (A.3). This is just the result (21) of section 2.
Concerning the impulse, it is straightforward to justify, using arguments like the preceding

ones, the calculations of section 3 leading to (46). It is only necessary to check that the time-
dependent expectation value, 〈ψ(t)|F |ψ(t)〉, is integrable in t . 〈ψ(t)|F |ψ(t)〉 is given by an
expression like (A.15), but with ca(k) and c∗

a+1(p)modulated by the factors exp(−ih̄k2t/2M)
and exp(ih̄p2t/2M) respectively. We have that∫ ∞

0
k1+α̃cm(k) exp

(
−i
h̄k2

2M
t

)
dk = iM

h̄t

∫ ∞

0

d

dk
(kα̃cm(k)) exp

(
−i
h̄k2

2M
t

)
dk = O(1/t)

(A.18)
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for large t (the integration by parts is justified by (A.2) and (A.3)). Similarly,∫∞
0 p2−α̃c∗

a+1(p) exp (ih̄p2t/2M) dp = O(1/t). It follows that 〈ψ(t)|F |ψ(t)〉 falls off as
1/t2.

Appendix A.1. Proof of (A.13)

Given functions f and g defined on a domain D, we will say that f is dominated by g if, for
some constant C, |f | < Cg throughoutD. For functions indexed by an integerm, e.g. fm and
gm, we will say that fm is dominated by gm if |fm| < Cgm for some C which does not depend
on m. Thus, from (A.1),

cm(k)c
∗
m+1(p) is dominated by (1 +m2)−1(1 + k2 + p2)−4 for k, p > 0. (A.19)

The integral in (A.11) can be evaluated (Gradshteyn and Ryzhik 1980) to give

Kε
m(k, p) = sgn(m− a)

2ε2
k2p(k2 − p2)e−(k2+p2)/4ε2

Iν

(
kp

2ε2

)
(A.20)

where Iν(z) is a modified Bessel function, and ν = |m− α|. From the asymptotic behaviour
of Iν(z) for large argument, it follows that Iν(z) is dominated by ez/

√
z for z real. Therefore,

the left-hand side of (A.13) is dominated by
∞∑

m=−∞

1

1 +m2

1

ε

∫ ∞

0

∫ ∞

0
exp

(
− (k − p)2

2ε2

)
k3/2p1/2|k2 − p2|
(1 + k2 + p2)4

dk dp. (A.21)

Let us divide the domain of the (k, p)-integral into regions inside and outside the strip
|k − p| < ε2/3. Inside, the integrand is dominated by ε2/3k3/(1 + k2)4; thus the integral
over the strip is dominated by ε4/3. Outside the strip, the integrand is dominated by
exp (−ε−2/3)/(1 + k2 + p2)2; thus the (k, p)-integral outside the strip is dominated by
exp (−ε−2/3). Therefore, the expression in (A.21) is dominated by

∞∑
m=−∞

1

1 +m2

1

ε
(ε4/3 + exp (−ε−2/3)) (A.22)

which vanishes as ε → 0.

Appendix A.2. Proof of (A.14)

Substituting the series expansion

Jν(z) =
( z

2

)ν ∞∑
u=0

1

u!&(u + ν + 1)

(
−z

2

4

)u
(A.23)

and a similar expansion for J−ν(z), we obtain that

kν
∫ ∞

0
e−ε2r2

Jν(pr)J−ν(kr)r dr

= 1

2ε2
pν

∞∑
u=0

∞∑
v=0

&(u + v + 1)

u!v!&(u− ν + 1)&(v + ν + 1)

(
− k2

4ε2

)u (
− p2

4ε2

)v
. (A.24)

For ε > 0, the r-integral andu- and v-sums are absolutely convergent for all k, p � 0. Inserting
in (A.24) the integral representation for the reciprocal of the beta-function (Gradshteyn and
Ryzhik 1980)

&(u + v + 1)

&(u− ν + 1)&(v + ν + 1)
= 1

(u + v + 1)B(u− ν + 1, v + ν + 1)

= 2

π
Re

∫ π/2

0
(2i sin τe−iτ )u(−2i sin τeiτ )ve2iν(τ−π/2) dτ (A.25)
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we may perform the sums to obtain

kν
∫ ∞

0
e−ε2r2

Jν(pr)J−ν(kr)r dr = pν

πε2
Re

∫ π/2

0
exp

(
− p2 + k2

2ε2
sin2 τ

+ i
p2 − k2

4ε2
sin 2τ + 2iν(τ − π/2)

)
dτ. (A.26)

Substituting this result into (A.12), we obtain

Kε
a (k, p) = 1

πε2
k1+α̃p2−α̃(p2 − k2)Re

∫ π/2

0
e−S/ε2

dτ (A.27)

where the exponent S is given by

S = 1
4 (k

2 + p2)(1 − cos 2τ)− 1
4 i(p2 − k2) sin 2τ − 2iε2(1 − α̃)(τ − π/2). (A.28)

It is clear that the main contribution to the τ -integral in (A.27) comes from the
neighbourhood of τ = 0. If S is expanded about τ = 0 to second order, the τ -integral
yields an error function, whose leading-order asymptotics as ε → 0 leads directly to the
required result (A.14). However, the next term in the asymptotic expansion is not uniformly
bounded in k and p—it contains a factor (k2 − p2)−2—so we must take some additional care.

To proceed, we divide the domain of the k, p-integral into the three regions specified
below, writing the left-hand side of (A.14) as(

lim
ε→0

∫ ∫
D1

+ lim
ε→0

∫ ∫
D2

+ lim
ε→0

∫ ∫
D3

)
Kε
a (k, p)c

∗
a+1(p)ca(k) dk dp (A.29)

and analysing the contribution from each region separately.
Let D1 denote the region k, p � 0, k2 + p2 � εβ , where β is chosen to satisfy

4
7 < β < 2

3 . (A.30)

In this region, the exponential factor in (A.27) is bounded, and k1+α̃p2−α̃(p2 −k2) is dominated
by ε5β/2. The coefficients |ca(k)| and |c∗

a+1(p)| are bounded, and the area of D1 is dominated
by ε2β , so that the contribution from D1 in (A.29) is dominated by ε7β/2−2. Given the choice
of β, this vanishes as ε → 0.

Let D2 be the region k, p � 0, k2 + p2 � εβ and |p2 − k2| � εγ , where γ is chosen to
satisfy

1
2 + 1

4β < γ < 1 − 1
2β (A.31)

(since β < 2
3 , the inequality (A.31) can be always be satisfied). Since 1 − cos 2τ � τ 2

for 0 � τ � π/2, the factor exp (−S/ε2) is dominated by the Gaussian exp (−σ 2τ 2), where
σ = 1

2ε
β/2−1. Thus

∫ π/2
0 exp (−S/ε2) dτ is dominated by ε1−β/2. Then, from (A.27),Kε

a (k, p)

is dominated by εγ−β/2−1k1+αp2−α in D2. From (A.1), p2−αc∗
a+1(p)ca(k) is integrable over

the region k, p � 0. Therefore, the contribution from D2 to (A.29) is dominated by ε2γ− 1
2 β−1

(the additional factor of εγ is due to the fact that the integral is confined to |k2 − p2| � εγ ).
Given the choice of γ , this vanishes as ε → 0.

The remaining region D3 is given by k, p � 0, k2 + p2 � εβ and |p2 − k2| � εγ .
Integrating by parts with respect to τ in (A.27), we obtain that

Kε
a (k, p) = 1

π
k1+α̃p2−α̃(p2 − k2)

×Re

(
e−S/ε2

Sτ

∣∣∣∣
τ=0

− e−S/ε2

Sτ

∣∣∣∣
τ=π/2

−
∫ π/2

0
e−S Sττ

S2
τ

dτ

)
. (A.32)
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The first term gives

2

π
sin πα̃ k1+α̃p2−α̃

(
1 +

4(1 − α̃)ε2

p2 − k2

)−1

. (A.33)

Its contribution to the integral over D3 in (A.29) yields, in the limit ε → 0, the required
result (A.14).

It remains to show that the contribution to the D3-integral from the remaining terms
in (A.32) vanishes in the limit ε → 0. It is readily seen that the contribution from
the second term vanishes exponentially with ε. For the third term, we note that, on the
interval 0 � τ � π/2, Sττ /S2

τ is dominated by (k2 + p2)/(k2 − p2)2, and exp (−S/ε2) is
dominated by exp (−εβ−2τ 2/2). Therefore, the integral

∫ π/2
0 e−S/ε2

(Sττ /S
2
τ ) dτ is dominated

by ε1−β/2(k2 + p2)/(p2 − k2)2. Thus, the third term in (A.32) is dominated by ε1−β/2(k2 +
p2)k1+α̃p2−α̃/|k2 −p2|, which onD3 is dominated by ε1−β/2−γ (k2 +p2)7/2. The contribution
to the integral overD3 in (A.29) is dominated by ε1−β/2−γ , which, by the choice of γ , vanishes
as ε → 0.
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